Dr Stuart Johnston

  • Room: Level: 03 Room: 11
  • Building: Old Geology South
  • Campus: Parkville

Research interests

  • Cell migration
  • Collective behaviour
  • Mathematical modelling
  • Nanoparticles
  • Stochastic modelling

Recent publications

  1. Johnston S, Painter KJ. The impact of short- and long-range perception on population movements. Journal of Theoretical Biology. Academic Press. 2019, Vol. 460. DOI: 10.1016/j.jtbi.2018.10.031
  2. Johnston S, Faria M, Crampin E. An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose. JOURNAL OF THE ROYAL SOCIETY INTERFACE. The Royal Society Publishing. 2018, Vol. 15, Issue 144. DOI: 10.1098/rsif.2018.0364
  3. Johnston S. MATHEMATICAL MODELS for QUANTIFYING COLLECTIVE CELL BEHAVIOUR. Bulletin of the Australian Mathematical Society. Cambridge University Press. 2018, Vol. 97, Issue 2. DOI: 10.1017/S0004972717001149
  4. Yun G, Besford Q, Johnston S, Richardson J, Pan S, Biviano M, Caruso F. Self-Assembly of Nano- to Macroscopic Metal-Phenolic Materials. CHEMISTRY OF MATERIALS. American Chemical Society. 2018, Vol. 30, Issue 16. DOI: 10.1021/acs.chemmater.8b02616
  5. Johnston S, Baker RE, Simpson MJ. A new and accurate continuum description of moving fronts. New Journal of Physics. Institute of Physics Publishing. 2017, Vol. 19, Issue 3. DOI: 10.1088/1367-2630/aa5bf5
  6. Johnston S, Baker RE, McElwain DLS, Simpson MJ. Co-operation, competition and crowding: A discrete framework linking allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves. Scientific Reports. Nature Publishing Group. 2017, Vol. 7. DOI: 10.1038/srep42134
  7. Johnston S, Baker RE, Simpson MJ. Filling the gaps: A robust description of adhesive birth-death-movement processes. Physical Review E. American Physical Society. 2016, Vol. 93, Issue 4. DOI: 10.1103/PhysRevE.93.042413
  8. Johnston S, Ross JV, Binder BJ, Sean Mcelwain DL, Haridas P, Simpson MJ. Quantifying the effect of experimental design choices for in vitro scratch assays. Journal of Theoretical Biology. Academic Press. 2016, Vol. 400. DOI: 10.1016/j.jtbi.2016.04.012
  9. Johnston S, Shah ET, Chopin LK, Sean Mcelwain DL, Simpson MJ. Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOMâ„¢ assay data using the Fisher-Kolmogorov model. BMC Systems Biology. Biomed Central. 2015, Vol. 9, Issue 1. DOI: 10.1186/s12918-015-0182-y
  10. Johnston S, Simpson MJ, Baker RE. Modelling the movement of interacting cell populations: A moment dynamics approach. Journal of Theoretical Biology. Academic Press. 2015, Vol. 370. DOI: 10.1016/j.jtbi.2015.01.025
  11. Johnston S, Simpson MJ, McElwain DLS. How much information can be obtained from tracking the position of the leading edge in a scratch assay?. Journal of the Royal Society Interface. The Royal Society Publishing. 2014, Vol. 11, Issue 97. DOI: 10.1098/rsif.2014.0325
  12. Johnston S, Simpson MJ, McElwain DLS, Binder BJ, Ross JV. Interpreting scratch assays using pair density dynamics and approximate Bayesian computation. Open Biology. The Royal Society Publishing. 2014, Vol. 4, Issue 9. DOI: 10.1098/rsob.140097
  13. Johnston S, Simpson MJ, Plank MJ. Lattice-free descriptions of collective motion with crowding and adhesion. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. American Physical Society. 2013, Vol. 88, Issue 6. DOI: 10.1103/PhysRevE.88.062720
  14. Johnston S, Simpson MJ, Baker RE. Mean-field descriptions of collective migration with strong adhesion. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. American Physical Society. 2012, Vol. 85, Issue 5. DOI: 10.1103/PhysRevE.85.051922