Biofabrication and tissue engineering

Working with partners in materials synthesis and fabrication approaches, as well as tissue engineering of musculoskeletal tissues, we investigate approaches for more efficient, effective and nascent tissue production. This includes exploring bioprinting (13), electrospinning (34), decellularisation (23), sterilisation (17), and material-doping (10, 14) approaches.


34. J. Walser, K.S. Stok, M.D. Caversaccio, and S.J. Ferguson. Direct  electrospinning of 3D auricle-shaped scaffolds for tissue engineering  applications, Biofabrication, 8(2):025007, 2016.

23. L. Utomo, M. M. Pleumeekers, L. Nimeskern, S. Nürnberger, K. S.  Stok, F. Hildner, G. J.V.M. van Osch, Processing and characterization of  a decellularized cartilage scaffold for ear cartilage reconstruction,  Biomedical Materials, 10(1), 015010, 2015.

17. S. Hofmann, K. S. Stok, T. Kohler, A. J. Meinel, and R. Müller.  Sterilization effects on structure and properties of 3D silk fibroin  scaffolds, Acta Biomat., 10(1):308-317, 2014.

14. D. Loessner, S. C. Rizzi, K. S. Stok, T. Fuhrman, B. Hollier, V.  Magdolen, D. W. Hutmacher and J. A. Clements. A bioengineered 3D ovarian  cancer model for the assessment of peptidase-mediated enhancement of  spheroid growth and intraperitoneal spread. Biomaterials,  34(30):7389-7400, 2013.

13. L. Nimeskern, H. Martinez, J. Sundberg, P. Gatenholm, R. Müller  and K. S. Stok. Mechanical evaluation of bacterial nanocellulose as an  implant material for ear cartilage replacement. J. Mech. Behav. Biomed.,  22C:12-21, 2013.

10. E. Schuh, S. Hofmann, K. S. Stok, H. Notbohm, R. Müller and N.  Rotter. Chondrocyte redifferentiation in 3D: the effect of adhesion site  density and substrate elasticity. J. Biomed. Mater. Res. A, 100 (1):  38-47, 2012.